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The matrix elements of two-particle interactions between states of many-particle configurations are 
expressed as products of one-particle reduced matrix elements and of a single recoupling coefficient. Applica
tions are given to the Coulomb interaction of lnV configurations and to all three-electron configurations. 

1. INTRODUCTION 

IN a shell-model treatment of a many-particle system 
one considers initially states of single particles in a 

central field. In this approximation a many-particle 
state is constructed by coupling the angular momenta 
of the various particles according to a definite prescrip
tion. In a further approximation one takes into account 
the interaction between pairs of particles. To this end 
one has to calculate the two-particle interaction 
matrix elements between initial many-particle states. 
Since these initial states are properly symmetrized 
linear combinations of unsymmetrized states, the 
matrix elements will be linear combinations of terms 
constructed from the unsymmetrized states. We shall 
deal with these unsymmetrized matrix elements in 
Sees. 2 and 5, and with symmetrized ones in Sees. 3 
and 4. 

The interaction is conveniently expanded into 
multipole components. Each of these components is 
generally the product of a factor depending on radial 
variables and of another ("angular") factor depending 
on directional and/or spin variables. We are concerned 
here only with the angular factor. For example, the 
electrostatic interaction between two particles, 5 and t, 
is expanded into a sum of terms consisting of a radial 
factor times a spherical function, 

Pfc(cos^f) = E,[47r / (2^+l)] ( - l ) f c - 5 

XYk,q(09<p9)Ykt-q(0t<pt), (1) 

of the angle 68t between the directions, {Bs<ps) and 
{Qt<Pt),ol the two particles with respect to the center of 
the system. In general, the angular factor of each 
2fc-pole component of the interaction may be repre
sented as the scalar product 

S^-£^=E*(~l)*-5© [^2 [ f c ]-s (2) 

of two sets of tensorial operators1 which operate, 
respectively, on direction (or spin) coordinates 5 and /. 

To calculate the matrix elements of (2) one wants to 
express them in terms of the matrix elements of the 
one-particle operators ©[&] (or X[k]) between one-

1 See, e.g., U. Fano and G. Racah, Irreducible Tensorial Sets 
(Academic Press Inc., New York, 1959), which will be referred 
to as "FR." 

particle states with angular momenta / / , j s (or j / , jt). 
This requirement led to the development of the Racah 
algebra. Racah's basic formula,2 which gives the matrix 
element of (2) between two-particle states, was inter
preted later (FR Chap. 15) in terms of a recoupling of 
one-particle eigenstates.3 The matrix element of (2) 
between states of three or more coupled particles can 
be reduced to the original Racah formula by a sequence 
of recouplings. This sequence may be somewhat 
circuitous, particularly for the exchange portion of an 
interaction (see, e.g., FR Chap. 16). 

In the course of a routine application of this method 
of multiple recoupling it was noticed that its result 
could be condensed into a single recoupling coefficient. 
It was then found that the matrix element of (2) 
between two many-particle states can be expressed 
directly as the product of one-particle matrix elements 
and of a single recoupling coefficient. This coefficient 
arises as the overlap integral—i.e., as the product in 
Hilbert space—of two wave functions of the same 
particles with different angular momentum coupling 
schemes. 

The basic new result is given by Eq. (10) in Sec. 2, 
and applies equally to direct interaction and to exchange 
matrix elements. This result permits an approach to 
atomic calculations alternative to that developed by 
Racah. It is applied in Sec. 3 to obtain the Coulomb 
interaction energy matrix between symmetrized states 
of equivalent electrons plus one electron in other 
subshells. This result relates closely to a formula 
recently obtained by Judd4 through the usual approach. 
Section 4 gives the interaction matrix elements between 
all possible three-electron states. Section 5 extends 
Eq. (10) to the matrix elements of nonscalar products 
of tensorial sets of operators. 

2. DERIVATION OF THE MAIN FORMULA 
An analytical artifice will be used which replaces 

each single-particle tensorial operator with a scalar 
2 G. Racah, Phys. Rev. 62, 438 (1942). 
3 Recoupling is an orthogonal transformation between two 

products of the same angular momentum eigenstates constructed 
according to alternative coupling schemes. It is a geometric 
operation which applies not only to angular momentum eigen
states, but also to other irreducible tensorial sets. 

4 B. R. Judd, Phys. Rev. 125, 613 (1962). 
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operator. This operator acts on the variables of one 
particle and simultaneously combines its angular mo
mentum with the angular momentum of an additional 
mock particle. To this end we introduce a variable K of 
a mock particle and wave functions u(kq), or u{k]

q, of 
this variable pertaining to eigenstates with angular 
momentum and magnetic quantum numbers k and q. 
The orthogonality property of these wave functions, 

/ d,K u*(kq')u(kq) = dq>q, (3) 

may be expressed symbolically as 

utVuw«=*«v (30 
This property serves to break up the scalar product 

of operators in (2) into a product of two separate 
scalars, each of which involves only (B[fc] or X{k]: 

= E . ' ® I « a l l w / ] C E , ( - l ) l ^ u W f S C W - J , (4) 

that is, in vector notation, 

g [ * ] . j i t i = [ g W i t W ] * [ t t W . j w ] ( (5) 

The notations of FR Chaps. 5 and 6 have been used 
here. Integration over K is implied in (4) and (5), in 
accordance with (3'). The transformation of (Blk]-Xlk] 

in (5) is analogous to the familiar transformation of a 
product of vectors, A • B into a sum of products with 
unit vectors ut directed along the coordinate axes, 
A- B=X)»" A-u»Ut- B. (The product u[k]*ulk] corresponds 
to the diadic u«u»* and the integration over K to the 
summation over i.) 

Call\p(ksj8tn8) the angular momentum eigenfunctions 
of a particle s on which ©[k]

 q operates. (The index X, 
represents all the single-particle quantum numbers 
other than /* and m8.) Application of ©[fcl

g from the 
right on \l/*(ksj8in8) yields 

**(Aiiv • -M.r - -,Xiii,- • -,x»i»; • • -JMy&H™* 

= (2/.+i)-w £ (x.y.||5W||x/v/o^*(Xiii,- • -,(x/,i/,,%^- • -,x^,-• -,xnyn; • • -JM). (9) 
X . " j . " 

The result of the operation is thereby expanded in a series of eigenf unctions of n+1 particles—the initial n plus 
the mock particle—in which the mock particle is coupled to particle 5 and their resultant is coupled to the other 
ones exactly as particle s had been before the operation. 

Formulas analogous to (6), (7), and (9) are obtained in the process of operating on a wave function (8) with 
it 1*1.%m from the left.5 We have 

»w.5£f*V(x/iiW)= L ^((*^x/v/0i«W)(Xi /7/1|ri*i||x/i/)(2jV+i)-^, (70 

tt'*'-Jt*"*(XiVi',- • -.x.'/.V • -Xit',- • -.x.'j-';- • -J'M') 
= E nM'jl',---,\s'j,',---,(Wjt")jt',---*,/jn'; • • •J'M')(\t"jt"\\Tw\\\l'jl')(2jl'+i)-u\ (9') 

X t " 3t" 

5 One should, however, conveniently utilize an expression of tensorial operator matrix elements somewhat different from 
(FR 14.4), namely, 

**(X.i.f i i .)®W f f 

=E>.-V'v'(W.»». I ©ik]
 q I x/'i.VYlx/'i/V) 

= (2j .+i)-^ Ex/v."«.-(X.i.ll5W||x/'i//) 
X U"kj8m81 j:'m."kqW>Qi."j,"m."\ (6) 

where the reduced matrix element (\8j8\\S
[k]\\\8"js

f/) 
has been introduced in accordance with (FR 14.4) and 
other current references. (The values of the reduced 
matrix elements of the spherical harmonics and of other 
usual tensorial operators are given by well-known 
formulas.) It follows that the application of the whole 
operator ©Wit1*1* is represented by 

^•(X.i.w.)®1*^1*1* 
= (2ia+l)-^2 Z x / V ^ I I ^ | | X / ' j 7 0 

X$*WJ/f,k)jsrns), (7) 

where the wave function $ pertains to a joint state of 
the particles 5 and K coupled with resultant angular 
momentum j 8 . 

Consider now a typical unsymmetrized w-particle 
wave function with total angular momentum quantum 
numbers JM. We may represent it in the form 

^(Xiii,- -,*sjs,'' 'Mh'' -,X»yn; * • -JM) 

£ C-->''''-»---J...mt...mt...M$(\ljlMl)-' ' 
mi • • -m$' • -tnf • •«*»» 

X^(X.Jtf»,) • • '>p{\tjtMt) • ' '^(\njnfnn)9 (8) 

where the coefficients C are products of Wigner coeffi
cients which depend on the prescribed coupling of 
angular momenta. The dots that precede / represent 
the n—2 j numbers required, in addition to / , to 
specify the coupling of the n one-particle angular 
momenta (see FR Chap. 8). These j numbers are not 
listed explicitly here because our treatment does not 
relate to any specific coupling. Because of Eq. (7), ap
plication of the operator ©t^u^i* to the complex con
jugate of ^ , from the right, is represented by 
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Notice that k enters the coupling scheme on the left 
of j t " in (70 and (9'), but on the right of j s " in (7) 
and (9). 

The desired matrix element is now obtained by 
multiplying (9) and (9'), with (9) on the left, and 
integrating over all the n-\-l variables, 1, • • - , $ , • • *, 
K, • • • ,* , • • • n. The integral over the product of the 
left-hand side of (9) and (9') is the matrix element of 
©[*].£[*], due to (5). On the right-hand side we 
find, besides numerical coefficients and reduced matrix 
elements, integrals over products of two wave functions. 
Each of these integrals vanishes unless it involves a 
pair of wave functions constructed with products of the 
same one-particle wave functions. This condition 
requires tha t : (a) (X/ ' j / ' ) = (\/j/) and (X/ ' j / ' ) 

The transformation coefficient on the right-hand side 
of (10) pertains to the recoupling of (n+l)-io\d eigen-
state products of degree / . The coupling schemes, which 
are left unspecified on the left and on the right of this 
coefficient, are understood to be the same as on the 
corresponding sides of the matrix element on the left-
hand side of (10) and to be represented by the same j 
numbers, with the following key substitutions. The 
quantum number jV, which represents the angular 
momentum of the single particle t on the left-hand side 
of (10), represents, on the right-hand side, the sum of 
angular momenta k and jt of the pair of particles K 
and t. Similarly, j a represents the sum of the angular 
momenta of s and K on the right-hand side. These 
substitutions augment the two ^-fold products of one-
particle states, which identify the matrix elements on 
the left-hand side of (10), to yield the two (»+l)-fold 
products which identify the recoupling coefficient on 
the right-hand side. The quantum number k, attributed 
in our treatment to the mock particle K, stands, of 
course, for the degree k of the operators <Slk] and X[k]. 
The factor [ ( 2 / . + l ) ( 2 j 7 + l ) ] - 1 ' * on the right-hand 
side of (10) contains the quantum numbers that 
represent the resultant angular momenta of the mock 
particle and of the particles s and t. 

The recoupling coefficient in (10) is, of course, a 
function only of the j numbers involved in it, namely, 
(a) the n+2 angular momentum quantum numbers 
J l , ' ' ' , js-h js, jS, ja+l, ' ' • , jt-h jh j t , jt+h * " ' i jn> 

(b) the degree k of the operator sets, (c) the two groups 
of n—2 additional j numbers which specify the (gener
ally different) couplings on the two sides of the re
coupling coefficient, (d) the degree / of the products 
that are being recoupled. The classification and evalu
ation of recoupling coefficients have not yet received a 
general treatment. A basic procedure for evaluating 

= (Xf j t ) , so that a single term from each of the sum
mations in (9) and (9') gives a nonvanishing contri
bution, and (b) (X//7) = (\%ji) for i?*s, t, so that the 
whole expression vanishes unless the matrix element on 
the left-hand side is diagonal in the one-particle 
quantum numbers other than those of s and /. More
over, the whole expression also vanishes unless (JM) 
= (J'M'). The residual nonvanishing integral on the 
right-hand side is the overlap integral mentioned in 
Sec. 1, wThich is known as a recoupling coefficient, is 
independent of the quantum numbers X and could be 
expressed as a sum over the products of Wigner coeffi
cients included in the coefficients C of (8). The results 
of the integration over the product of (9) and (9') is, 
therefore, 

any one of them (FR Chap. 9) consists of factorizing 
it into a sum of products of triple-product recoupling 
coefficients which are—to within a factor—extensively 
tabulated under the name of Racah, or 6-j coeffi
cients.6 

The coupling of many particles is often equal on both 
sides of the recoupling coefficient in (10), because the 
interaction operates between two particles only. There
by the explicit form of the recoupling coefficient may 
reduce greatly, as will be seen in Sec. 3, since a subgroup 
of particles with invariant coupling participates in the 
recoupling as though it consisted of a single particle. 

3. EXAMPLE: l^V CONFIGURATIONS 

As an example of application of formula (10) we 
calculate the matrix element 

OWIGI^KX11)) (ii) 
of the interaction 

G=Eg<i ( * ' , i = l , 2 , • • • , » ) 

between L—S coupling antisymmetric states of n 
identical particles 

^(\^ = ^Q^(aiS1Ll)l
fSLJJM)1 

^(X") = ^(/*-i(a1
/5i ,Li /) / / /5 /L / , / , i l f /) . ( 1 3 ) 

This matrix element is equal to 

^ ( n - l ) ( ^ ( X I ) ( g n - i , n | ^ ( X 1 1 ) ) , (14) 

where gn-i,n is the interaction between "particle «" 
and "particle n—1." Following Racah7 we write the 

6 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, 
Jr., The 3-j and 6-j Symbols (Technology Press, Cambridge, 
Massachusetts, 1959). 

7 G. Racah, Phys. Rev. 63, 367 (1943), Eq. (26). 

(Xijr • -,X.i.,- • -,XtfV • •; / M i @ ^ - 2 ^ i X i i v " * A / ; / , - • -,X/jV,- • •; J'M') 
= [ ( 2 j 8 + l ) ( 2 j / + l ) ] - i ' ^ ^ 

XOV -,U.'k)j.r-,h' "\jv • -,i/,- • -,(*i«)i«V • -Y^JJ'&MM'. (10) 
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antisymmetric w-particle states in terms of antisymmetric n— 1 particle states as 

^(\^=(n)^i:(-iy<Hl^1^iSiL1)ViSL}JM)9 *(An) = ( » ) - 1 ^ E ( - l ) p ^ ( ^ 1 ( a i / 5 i / L i O / V / i V / ^ , ) i (15) 

where i \ is the parity of the permutation that exchanges i and n, the indexes i, j in lf, V indicate that the ith 
and jth particle are in these states and the state ln~x{a\S\L\) is that of particles 1, 2, • • •, i—1, i + 1 , • • •#. Sub
stitution of (15) into (14) gives 

= (»-1){ ( / - 1 (axSiLtWnSLJM | gn_lf n | Z""1 (pn'Sx'LfiV'JS'L'J'M') 

~{ln-l{aiSlLl)l'r^lSLJM\gr^ltn\l^ terms if / '=/") , (16) 

after some relabeling which allows one to cancel the \ factor. [The "core terms" will be ignored in what follows; 
they are equal to the n-\ particles interaction energy (/n-K«i5iLi)|G|/n-Ka/5/i:i/))X5(5i6 ,i/)5^iZ,i ,)5(/ ,///).] 

Now we separate out the "last" of the ln~l electrons from the other ones utilizing the fractional parentage 
formula (10) of reference 7, 

(̂/"-fciSiLi) = E Hl^i^^lSiLOQ^iaS^lSiLiy^aiSiLi). (17) 
aSL 

One gets then 

(^(XI)|G|^(XII))= (*i-l) £ Q^aiSxLxll^iaSVllSxLx) 
aSLa'&'L' 

X {Qn~2 (aSLy^&LJ'JSLJM I gn-i, n I ln~2 {d,B,U)ln.1Sl
,L WnS'L'J'M') 

X (/^(^ ' /S 'LOWi^i ' l^-^i^ i^ iO. (18) 

The matrix elements of g«_i,n that appear in (18) are now calculated for the case 

gnr-l,n=#/rn-i,n. (19) 

Integration over the space variables yields for the two matrix elements in the right-hand side of (18), respectively, 
the expressions 

E Rk(Nl,NT;Nl,N'T)8(aa')5(SS')8(LL^^ 
k 

X ( ( S L j n - i ^ W n S L J M l HW{n-1).<£[*](n) \ (SLj^SSLW'J'L'JM), (20) 

£ Rk(NT,Nl; NliN
fT)d(aaf)8(SS,)HLL,)Xd(JJf)8(MMf) 

k 

X((8L9ln)SiLhr^vSL9JMI S<fc3(»-1)• C w(»)I {BLjLn-dSi'Li'tV'JS'L'JM), (21) 

where the notation of FR for the representation (1) of P*(cos0»_i,«) as a scalar product has been used, the Rk 

are Slater integrals (N= principal quantum number) and conservation of total angular momentum has been 
taken into account. 

Application of (10) to the matrix elements of the tensorial scalar product in (20) gives 

{{SLiln^1)S1Lul
,
nSUM|ffw(n-l).«w(n)\ (BLyl^i)S1'Ll',l"nS

,L'JM) 
= C(2/+1)(2^+1)3-^(*lici*i||o(r||ct*iH^'xCiSZ,(/n-i*)/)^^!,^^/:| (Si^^-O^/ii',(«ft

/)i//,5//:/)CJ>. (22) 

Since orbital and spin parts factor out, the recoupling coefficient in (22) is equal to 

( [ I , ( / ^ i * ) G L i A ' | [ L , ^ ^ (23) 

The spin factor is equal to 8(Si,Si) and the orbital part can be expressed as the product of two W functions. 
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[See FR Eq. (12.4).] With this the right-hand side of Eq. (22) becomes 

e x p C « a + i ' + I + i i + i i ' + i ) I ( 2 i i + l ) ( 2 £ i ' + l ) J « ( / | | c w | | 0 ( / ' | | C i * i | | ; ' 0 

fl I L A [U k Li\ 
XWl )W( YiStSSMLL'MSS'). (24) 

\k U I I \V L I") 

For the matrix element in (21) (i.e., for the exchange term) application of (10) gives 

({BWJSxUh^'SLJM| <&«(n-1) G w ( w ) | (SL,ln-l)S1'L1',ln"S'L',JM) 

= l(2l>+l)(2l"+l)J-uWlkm(l\\Cl^\n^ (25) 

The recoupling coefficient in (25) is equal to 

{(LMLuil^Wl ( L V _ i ) L Y ( W ) ( L , ( ( & « ) S i , * n - i | (<S5„_1)51',5n)<s)S(LL')5(55'). (26) 

The spin factor is now a 3—j recoupling coefficient that can be written in terms of a W function and the orbital 
part can be expressed in terms of an X function. The right-hand side of Eq. (25) is equal to 

e x p [ « 0 W - r + 2 S + 5 1 - 5 i , ) I ( 2 £ i + 1 ) (2LY+1) (2SH-1) (2Si '+1)]1 / 2 

(s S Si'y ..(s 8 Si'\ 
X(f'\\cm\\t)(l\\cm\\l")W[ ]X 

\s S St J 
I k I' 8(LL')8(SS'). (27) 

Equations (20) and (21) with (22), (25) and (24), (27) substituted into (18) give, on noticing that 

e x p [ « ( * + ; - / " + 2 S + 5 i - 5 i ' ) ] = - ( - l ) S l + S l ' , (28) 

(* (X I ) |G |* (X I I ) )= (» -1 ) £ {l~*a£1L1{l~-*(&8L)lSJ.1) 
kaSL 

(L I U\_tU k Li 
XWl )W[ MSiSi') + Rk(NT,Nl\ iV/,iV'7")(-l)S l + S l ' 

xEtfii+ijpLi'+iXMi+w^ x\x 
\s S Sj 

L I Li] 

I k V 

L{ r L 

A special case of this formula ( / '=/") has been given lent electron, indicated by |2) and states with three 
by Judd4 and the present one was conjectured by inequivalent electrons, indicated by |3). 
Wybourne.8 The matrix elements of an operator, 

4. THREE-ELECTRON MATRIX ELEMENTS 

(1|G|1) (1 |G|2) (1|G|3) 

G=Y, gij=H e2/rih 

In this section Eq. (10) is applied to calculate the 
Coulomb interaction matrix elements between all pos- a r e t n e n of the six types 
sible three electron L—S antisymmetric states. There 
are three basic types of possible three-electron states, 
namely, states with three equivalent electrons indi- (2|G|2) (2|G|3) 
cated by 11), states with two equivalent one inequiva- (3 |G|3) . 

8B. G. Wybourne (private communication). We thank Dr. Of type (1|G| 1) there is only the matrix element 
Wybourne for communication in advance of publication and for 
stimulating discussions. (lzaSL \ G \ fta'SL), (I) 

(30) 

(31) 
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but of type (11G \ 2) there are two, according to whether Of type (21G13) there is 
the equivalent electrons in 12) are or are not equivalent n 2 / 0 r N7 o r ,^, n n A O T , / o r v A m n 

to the electrons in 11): Qa (s*L*>l*SLIGI ^ h ) S ^ ^ SL), (VIII) 
and of type (3|G|3) 

\\lJ>b)SabLa}J'cSL \G\ (la lb )Sab Lab h SL)y (IX) 

(PaSL\G\l,l'2(S'L')SL). (Ill) where l's with the same index letter may be equal but 
those with different index differ. 

Matrix elements of the type (1|G|3) vanish unless The following formulas indicate the main steps and 
one of the laHc in |3) equals the I of |1). One has the final explicit form of the matrix elements (I) to 
then only the two matrix elements (IX) obtained by application of (10). The complete 

set of formulas is given even though (I), (II), and (III) 
(PaSL | G | (lah)SabLablSL), (IV) are special cases (for n=3) of (33a, b, and c) of reference 

7, and (VI) is a special case of (29). Antisymmetric 
QzaSL\G\ (Ua)S''L'lbSL). (V) states of type 11) are represented in terms of fractional 

parentage, those of types |2) and |3) by formulas of 
Of type (2|G|2) we have the type (15). Numerical subscripts to quantum num

bers / indicate the variable of the one-electron wave 
(la2(SaLa)lcSL\G\la'

2(Sa'La')lc'SL), (VI) function with the given quantum number; thus, e.g., 
la\ indicates a wave function of electron 1 with quantum 

Qa2(SaLa)lcSL\G\la',lc'2(ScLc)SL). (VII) number /«'. 

(Pa'SL\G\PaSL)= E (lWSLll2(S'LySL)Q2(S'LySL\G\l2$^^ 
S'L'SL 

= 3 L Va'SLlP(B'L')lSL)QMB'L')^ 
S'L'SL 

= 3 £ 03a'5Lp2(SL)/5L)i?^(/2,/2)(/||Ct^||02 e x p | > - ( L ) W . \p(BL)lSLVaSL), 
kSL \l L 1/ 

since 

QMS'L'VzSL | gu | hh(BL)l£L) 

=E -R*(?^)(2/+i)-iai|cw||0*<((W)«,)l7,| (h(kh)l)LhyL)«sis2)S%\ (stsjBsty* 
k 

a k i\ 

and k must be even. 

II. 

= £ e x p [ « ( £ + Z ) ] i ? W ) a | | C t * ] | | o W _ \(LL')8(SS'), 
k \l L ll 

(Po^L\G\P(S'LySL)^2y/3ZQ3o^L{l^(SL)SLXl1M3(BL),SL\g23\llk(STy'3SL) 
SL 

= 2^S03a5LC/,?(Si)5i)i?*(^//')C(2/+l)(2/'+l)]-wai|Ct*]||Oa||C'*i||/') 
kSL 

X Ch((l2k)lh)L\ (hh)L> (#,)D(W(*l(*t*l)5| (siSjS'SsYV 

= 2v3 £ (PaSLll,P(SL)SL)R"(P,im\\C^\\l)(l\\C^\\l') apfri(f+L+L+l+S)l 
kSL 

XL(2L'+1)(2L+1)(2S'+1)(2S+1)J»W(1 * l)w(l ' L'\w(h * S'\ 
V L VI \V L Ll \\ S SI 

(P*SL\G\l,l'*(S'L')SL)=tf £ (PaSL{lP(SL)SL){lhhh(SL)SL\glt\l^'1F1(S'L')SL) 
SL 

fl' k I-= y/3(.PaSL[lP(S'L')SLX- 1)L' £ Rk(Pr-){l\\Cm\\l'yw( \ 
" \l U I'J 
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IV. 

V3aSL\G\lJb(SabLah)lSL)= (2X3)1 '2£ (.l3aSL{P(SL)lSL)(.hl2(SL)l3SL\gi2\Ub2(SabLab)l^L) 
SL 

= 6"2 £ (PaSLlP(8L)ISL)Z **(PM)C(2^+l)(2/»+l)]-1'*(;||Ci«||0(/||CW||/») 
SL * 

V. 

X «(J.lfc)Hl)Z/t| (/.l(«l)/6)L.A)<»((*l*0&»l (il52)5afci3)
(S) 

fla k I 

\l Lab lb) 
:6i/2(_l)^(!'aSL{P(SabLab)lSL)Z Rk(P,Ub)(l\\C^\\la)(l\\C^\\lb)w( ' ) . 

* \ / Lab lb' 

{PaSL\G\Ua(S'L')lbSL) = 61 '2£ (PaSL{IP(SL)SL)(.h(hh)SLSL|g231 (hlai)S'L'lbzSL) 
SL 

X <!l((la2k)lh)L\ («.t)i'(«l)fc>(a(*l(*lSl)S| (*l*,)5'i,)«« 

= 6W £ (flaSLltt'CSDJD^^UX/llCWIIOailCWillW exp[>(L+/+§+L+.S)] 

\l L h) \h L LI \i S SJ 
VI. 

0o
2 (SJLJlcSL | G | k'2 (Sa'La')lc'SL) 

= E^H^2 , /a '2)5(W/)[(2/a+l)(2/a '+l)]-1 / 2(/a | |Ct*l | | / a0H(a a^^)Wa2)ia/c3|Oa'l(^a2)/<, ')^ ' /C3) ( L ) 

X((5i52)5053| ( w 2 ) 5 a ' ^ ) ( S > + 2 £ **(U e ,W. ' )« (W. ' ) [ (2 / .+ l)(2/.'+l)]- l '»(/.| |C[*i||/. ')(/«l|C[4i| |/. ') 
k 

X C((Vt*)W.»)W.i| (W.'s)£. ' («.i)t '> ( 1 )((*ui)5^i | (WSa 'si)<s>+2 £ «*(W.,/.'/.')8(W.,)C(2/.+l) 

ft 

x(2//+i):rw(qci«ii/.o(/.iicM||j.o<(w.i^ 
fla' k la = £ i ? * G a 2

J ^ ' 2 ) S ( / ^ ' ) ( 4 | | C [ * ] | | / a ' ) 2 ( - l ) L ^ f " ' )s(LaLa')S(SaSa') + 2 £ Rk(lJc,Uc'Wa' 
k \la La la I k 

Xaa| |Ct*l | |Z< 1 ' ) ( /C | |Ct*l | | / / ) (- l) '«+ iC(2i: a+l)(2L0 '+l)]1 /2^( a " " W " ^SiSaSa'. 
\k La la I \lc L lc I n 

' J^a la f \lc L> vc t 

+ 2 £ Rk(lah,lc'la')S(lala') (lc\\C™\\la')(la\\CW\\lc>)(-l)-S<+S°' 

fla la i 'al 

X [ (2Sa+1) (2La+1) (2Sa'+1) (2La '+ 1)]>'2Z 

VII. 

(/a2 {SaLa)lcSL \ G | /0',//2 (S.iOSX) 

= 2 £ i?*aa2
>Uc)S(Wc')C(2/a+l)(2/c+l)]-1/2(/0||C(i'||/a')aa||C[*l||^) 

A; 

X ( ( ( / a ' , * ) W a 2 ) Z - J C 3 | / a ' l ( ( W a 2 ) W c 3 ) L c ) ( « ( ( 5 I 5 2 ) 5 0 5 3 | 5 1 ( 5 2 5 3 ) 5 < ; ) ( S ) 

+2E^(W„^'2)5(U0 ')C(2/a+l)(2/(! '+l)]-1/2(/0||CW||/c ')(/c||C[*i||//) 
* 

XaLi(hi'k)la)LJe2\la3(.lcl'(klci)lc')Lcy^((s3s1)SaS2\s3(s1s2)Scy
s> 

la la i > o | 

la K lc ( 2 2 *->a \ 

i s sa
rJ 

file:///G/Ua
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= 2E^(/aVa7c)5(Wc')(/a||C^||;<1')(/a||C[*l||y(-l)i«'+t«+^»+S 

k 

X[(25.+ l)(25.+ l)(2Z,a+l)(2L.+ l)]>«M W( \wl ) 

+2S**(WJ.' i)*(W.')(/. | |Ci«| |/ . ')tf. | |Ci»]| |/ ,0(-l) ' ' fW-w+,-B 

X[(25a+1) (25c+1) (2La+1) (2LC+l)]1 'W( J M ^ J M x 

VIII. 

(la2 {SaLa)hSL | GI U i ' (Sat,'Lab%'SL) 

=v2E^aaVa'V)5(U/)[(2/a+l)(2/6'+l)]-1 '2(/a | |Cl i ' | | /0 ' )(/0 | |C^||/6 ' ) 
A: 

X C((/.'l*)W.l)W.l| (J.'l(«.t)*»,)£.»7.,)<»((j,J1)S.J,| (*lS2)So6's3)<
S> 

+V2Z-R4(WCJW/)S(W0')C(2/0+l)(2/l!'+l)]-1/2(/(I||Ct*i||V)(^||Ct*]||//) 

X < ( / . l ( V l * ) / . ) £ J . l | ( U 6 ' 2 ) £ a 6 ' ( ) W c l ) / c ' ) ( L > ( ( W S « 5 l | ( j t f f J S r f ' j l ) ^ 

+v5E^(Wc^6 ')8(W<.')C(2^+l)(2/c '+l)]-1/2(/c||Ct*i||/ t ')(/a||C'l*l||/c ') 

X {{U«*)La{lb\k)h\ (.Ub'i)Lah'(klia)lc'y
L'>((.S#*)SaSl I (**l)S.»'*,)<® 

=V2 £ ^*aa2,U6')5(W)(/a||Ct4i||/0')(/a||C[*]||;„')(-1)MP( " " W ^ - ' W - W . * ' ) 
* \/„ Z,a /&'/ 

+^E-R*(Wc,Wc ')5(Wa ')aa||C( t ' | |/6')(^||Cl*l||//)(-l)'«'+ i«+^^' 

_ //a /i' Lab'\ _ /Lai' A £a\ 
XL(2La+lK2Lab'+l)JiW[ )W[ )s(SaSab') 

\k La la J \lc L h'J 
+V5 £ ^(Wc,W6')5(Wa')ac||Cl^||/6')(/0||CI*l||/c')(-l)

S»+S«4' 
A: 

X l(2La+1) (2La6'+1) (25a+1) (2Sab'+ 1)]1/2X 

IX. I 

(lah(SabLab)lcSL \ G \ I alb \Sab Lab)lcSL) 

= (laJb2(SabLab)lc2SL | gi2 | h'lW%{Sab L>ab)lc iSL)— (la\lb2{SabLab)lczSL \ gu \ lallb\{SabLab)W&SL) 

+ (lalh2(SabLab)lcdSL | g231 la lh'2{Sab Lab)lc'$SL) — (lallb2(SabLab)lczSL | g231 la'lh'z{Sab Lab)lc'2$L) 

+ Qallb2(SabLab)lcdSL | g 3 i | la\h\{Sab Lab)lc zSL)~ Qallb2{SabLab)lclSL \ gzi \ Id\U\{Sab'Lab')lc\SL) 

X < ( ( / . ' l * ) W M ) £ « l / . l | ( / a ' l ( * ^ 2 ) V ) i a ^ o 3 ) ( L ) ( ( 5 l 5 2 ) ^ a ^ 3 | (*1*»)S .» '* , ) ( S ) 

-E^(U i ,Wa')S^')C(24+l)(2/0 '+l)]-1«(/0 | |Ct*i | |4 ' )W|C!^| | /0 ' ) 

X <.((h'ik)lalb2)Lablc3\ ((Mb2)la'lb'i)Lab'lc'zyL)((siS2)Sabs3\ (w05.»'*i)(» 

+ E^H«c,/67c')5(Wa')C(2/6+l)(2/c'+l)]-1/2(/6||Ct*]||/6')ac||C[*l||/(:') 

X ( ( / . l ( V M ) W . l | &l4'2)La&'(&o3)//)
(L)((W2)So6S3| (*lJj).S.»'Sl)<» 

-E^(W6,47<:')8(Wa')C(2/o+l)(2^'+l)]-1/2(4||Ct*i||/6')ft||Ct*)||//) 

/a 'a -^a 

W k lc 

Liab *c L -

/ I 1 
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X((!*llu)L*(k'tk)l.\ (/,xV»)i.5'(«M)/.') (1>((*l*«)'S'.i5,| (SlSdSabW* 

+ZKi(W0)/c7(l')5(W6')[(2/c+l)(2/a'+l)]-I/2ai|Ct,;l||/c')(/„||C[t]||/0') 
k 

( ( / a 1 4 2 ) i a 6 ( / c ' 3 * ) / c | ( ( ^ a l ) / a ' 4 2 ) i a 6 7 c ' 3 ) ( t > ( ( 5 1 5 2 ) 5 a b 5 3 | ( 5 l 5 2 ) 5 0 ^ 3 ) ( S > 

-Z**(W.>U.')«(W»')[(2/.+ l)(2^+l)]-1«(/e||Ct*'||/.')(/.||C[«|l^) 

X ( ( L l h j L a t Q a ' M h | ( / . W , ) £ . » ' ( M a l ) h ' y L ) ( ( 5 l 5 2 ) 5 a 5 5 3 | (W2)Sa&'5l ) ( S > 

= £ «*(U»,W»08(We')(/<,||C[*i||/.')(/»||Cl*i||/6')(-l)''
+I,+I"w( °, ° W.^OSGS.tf.*') 

A \lb h Lab/ 

+i:X*(W»>fc7.08(W.')(/.||Ci«||fc')(fc||Ct«||;.')(-l)s-»flP'( °, * WofcL.»')8(S.tf.»') 
* \ / a ' /& Lab/ 

+E**(w«,w,08(w.o(fciici«ii/»')a.iici«ii/.o(-i)'^',rf,«'+i",+i"*'+L 
A; 

(& Z,a& Lab\ __ /& £a6 Lab\ 
)W[ r )8(SaM 

L Id lc I Va lb h 1 
+E**(We,U»08(W.')(/.||ciii||/6')(fc||C[«||/.')(-i)s-,+fl-'' 

X C(2Lo6+1) (2Lab'+1) (25o6+1) (25a6'+l)]1'Wl (2 2 *->a& \ 

4 5 S.»7 

la *b J-sab 

lb k lc 

l .La6 lc LJ J 

+Z«*(W.>W.')8(W»0W|Ci«|IO(^l|Ct"||/.0(-i),*+'^w-£ 

_ / £ La6 -£a&'\ _ /k Lab Lab'\ 
X[(2L a 6+l)(2Z a 6 '+l)]1 'W )W[ )8(SabSab') 

\L lc' I, J \lb la' la J 

k 

X [ (2Lab+1) (2Lab'+1) (25a6+1) (2Sa6'+ 1)J*X 

5. EXTENSION OF EQUATION (10) 

lb la Lab 

la & lc 

^-t-'ob lc *-J 

( 2 2 *->a& \ 

2" S Sab' 

The matrix elements of nonscalar products of tensorial sets of operators, such as the product [gS^XS^2 3]]^1 

considered in FR Chap. 15, are given by a formula analogous to (10). An operator of this product set is 

C@I*llXSt*»i:i*^=S«i«@^^1SCt*»U(*iffi*2g2|*i*«feg). (32) 

We may factor out this operator by introducing wave functions of two mock particles, Ulkl]
Ql(Ki) and U[k2]

q2(K2), 
with angular momenta ki and k2j as well as wave functions u[klk2'k]

g(ni,K2) of the same particles coupled in a state 
with angular momentum k. The Wigner coefficient in (32) can now be represented, in the notation of (4), by 
U^^*Qlu

[k2]*Q2U
[klk2'k]

qi from which follows 

[ ® M X £ ^ ] ^ < ® ^ u ^ (33) 

where integration over /a and K2 is implied as in (3') and (5). Both operators (©t^lu^ii* and Xlk^ttlki]* may be 
applied to the complex conjugate of (8), using (9) twice to yield the analog of (9) 

= (2i8+i)-i«(2i(+i)^«Ex/,.4,,X(,,.(/,(Xsi8j|5[*o||X/'i/o(x1i(||rt^||x/'j<'') 
X**(XuV • •,(K"js"M)js>- •-,(\t"J"M)jt,-- •; JM). (34) 



2652 F A N O , P R A T S , AND G O L D S C H M I D T 

The wave function u[klk2'k]
q from (33) may be multiplied with a wave function (8) and expanded into coupled 

wave functions 

u[kik2'k]
qty(\iji,' • -,x/jV,- • - ,x/y/,« ' ' ; J'M') 

= ZJ»M» W i ' i i V • ->X/i/,- • -,X/i«V • OA(k^)k;J,'M,W'kJ'fM,f\rM,kq). (35) 

Multiplication of (34) and (35) in analogy with the multiplication of (9) and (9'), with integration over the 
variables and consideration of the orthonormality condition, yields the matrix element 

(Aiii,- • -,X.i.,- • -,X,jV • •; JM\[&™X%™T\\\iji,- • -,X/i/,- • -,X/jV,. • •; / 'Jf ' ) 

=C(2i.+i)(2i,+i)D-^(x.i.||5iw|lx/i.0(X#i.||r^ 
x o v • -,OVfci)i.,- • -,0V*2)ii,- • • IOV • -,i.V • -i*V • •Vf{klk,)ky»{jfkJM\j'Mtkq). (36) 

The reduced matrix element of the operator product is then, according to the definition (FR 14.4), 

(XijV • -,X.JV • -,XtfV ' •; JllCC^XSCMDWllXii!,- • -,X/,7,. • .,X,'.;/,- • . ; 70 
= C(2^+ i)/(2y.+1) (2yf+ i)T'1(X.i.ll5'^i Ilx/i.o (X«y«ll r1*"3 l|x/i/) 

xUir'',U*'ki)J*,---,Ut'k2)j*r- -1 OV • -i.V • -J/,- • O / W * ) * ) ^ . (37) 

Problems also occur where ©1**1 and £[fc2] operate on the same variable s rather than on two different variables 
^ and L Results analogous to (10) and (37) are then obtained, the main difference being than an intermediate 
state of the particle s occurs, whose quantum numbers X,", jjf do not coincide with either Xs, j8 or X/, j8

f. There
fore, a summation over X,", ja" appears in the following formulas: 

(Xiii, • • • M„ • • •; JMI @ i*i • X 1*11 Xiii, • • • X'js', •••; J'M') 
=[(2>+i)(2y/+i)]-1*Ev'i/'(x.i.||5i"||x.''y.'')(x.'V.''||ri«||x/i.') 

XOV• -,U."k)j.,---lib-• -,(kj.")j.f,-• •yWjj'&Mw, (38) 

(Xiii,- • -.W.,. • •; /||[@iwX«[*»']I"HXiji,- • -,X/i/,- • •; J') 
= C(2/+l)/(2ys+l)(2;V'+l)]1/2Zx^y."(XsA||5^ll||X/7/0(X/'i/'ll^te,l|X/i/) 

x O'I, • • • ,C(i/**)i."*i];., • • • I (ii, • • • J.', • • • )JW*)*)c /> . (39) 
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